A1/A2-Diamino-Substituted Pillar[5]arene-Based Acid—Base-Responsive Host—Guest System

Wei-Bo Hu,^{†,⊥} Wen-Jing Hu,[†] Xiao-Li Zhao,[‡] Yahu A. Liu,[§] Jiu-Sheng Li,^{*,†} Biao Jiang,^{*,†} and Ke Wen^{*,†,||}

[†]Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China

[‡]Shanghai Key Laboratory of Green Chemistry and Chemical Processes, and Department of Chemistry, East China Normal University, Shanghai 200062, China

[§]Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, California 92127, United States

Supporting Information

ABSTRACT: An acid—base-responsive supramolecular host—guest system based on a planarly chiral A1/A2-diamino-substituted pillar[5]arene (1)/ imidazolium ion recognition motif was created. The pillar[4]arene[1]-diaminobenzene 1 can bring an electron-deficient imidazolium cation into its cylindrically shaped cavity under neutral or basic conditions and release it under acidic conditions.

■ INTRODUCTION

Stimuli-responsive host-guest systems, which exhibit controlled host-guest association/dissociation triggered by external stimuli, such as pH, light, and redox state, are one of the major research focuses of supramolecular chemistry.¹ Building up novel host-guest molecular recognition motifs with high fidelity and responsiveness will certainly contribute to the development of molecular electronics,^{1b,2} molecular muscles,³ organocatalysts,⁴ and organogels.⁵ Synthetic macrocycles, such as crown ethers,⁶ cyclodextrins,⁷ calixarenes,⁸ cucurbiturils,⁹ and cyclophanenes,¹⁰ have long been used as host components in stimuli-responsive host-guest systems. Among them, pillar[n]arenes are a relatively new class of such host molecules, which are usually composed of 5-10 hydroquinone units linked by methylene bridges at para-positions.¹¹ Owing to the tubularshaped electron-rich cavity structures of pillar[n]arenes, numerous host-guest systems consisting of pillar[n]arenes and electron-deficient or neutral guest species have been reported,¹² and some of them have already found applications in sensing,¹³ separations,¹⁴ artificial transmembrane channels,¹⁵ and drug delivery.¹⁶ Pillar[n] are based stimuli-responsive host-guest molecular recognition motifs, with the binding/ releasing of guest species controlled by light, pH, or redox state, have been developed through mounting various functional groups on the rims of pillar[n] arene hosts and selecting guest species with appropriate sizes and functionalities.¹⁷ Among the reported pillar [n] arene-based stimuli-responsive host-guest molecular recognition motifs, most of the functional substituents are connected to the aromatic units of pillar[n] arenes through C-O, but the examples of connecting functional groups to the aromatic units of pillar[n] arenes through linkages other than C–O bonds are rare.¹⁸ We envisioned that mounting amino groups directly to the aromatic units of pillar[n] arene through C–N bond formation could provide unique synergistic advantages to pillar [n] arene functionalization, as well as novel pillar[n] arene-based stimuli-responsive host-guest molecular recognition motifs. However, direct installation of amino functionalities on the aromatic units of pillar[n] arenes has been proven quite challenging thus far. The only reported success was Stoddart and co-workers' introduction of two primary amino functions at the positions ortho to the hydroxyl groups of an A1/A2-dihydroxypillar[5]arene,¹⁹ but there are no reports on direct replacement of any alkoxy groups at the rims of pillar[n] arenes by amino functionalities. What we are reporting herein is a successful synthesis of A1/ A2-diamino-substituted pillar[5]arene (1), which was achieved through replacement of two A1/A2-alkoxy groups of pillar[5]arene 2 by primary amino functions, and, more importantly, development of an acid-base stimuli-responsive host-guest system based on this diamino-substituted pillar [5] arene 1 and an imidazolium ion, 1,3-dihexyl-1H-imidazol-3-ium (G). In this stimuli-responsive host-guest system, modulation of the electronic constitution of the aromatic units of the para-

Received: March 23, 2016 Published: April 18, 2016

Figure 1. (a) Crystal structures of the two planar enantiomers of pillar[4] arene[1] diaminobenzene 1, hydrogen atoms are omitted; and (b) chiral one-dimensional channels formed by the two planar enantiomers (1). Color code: O (red), N (blue), F (green), and C (gray).

pentacyclophanene 1 was realized through protonation/ deprotonation of the amino functionalities, giving the motif acid—base stimuli-responsive host—guest property.

RESULTS AND DISCUSSION

Our work started from the synthesis of A1/A2-diaminosubstituted pillar[5]arene 1 (Scheme 1). The synthesis began with a highly selective and efficient partial oxidation of 1,4dimethoxypillar[5]arene 2 which yielded pillar[4]arene[1]quinone (3)²⁰ The quinone unit in 3, obtained through the selective oxidation of the two A1/A2-alkoxy groups, was reduced to para-diphenol which was then treated with triflic anhydride to form a bistriflate unit in pillar[4]arene[1]bistriflate 5.^{18,21} The coupling of 5 and *tert*-butyl carbamate by means of a Buchwald-Hartwig reaction gave a Boc-protected pillar[4]arene[1]diaminobenzene (6) in excellent yield.²² Removing the Boc protective groups of 6 with CF₃COOH resulted in trifluoroacetic salt of pillar[4]arene[1]-diaminobenzene (1) which was characterized by ¹H and ¹³C NMR spectroscopy and HR-ESI mass spectrometry (Supporting Information). The whole synthesis started from pillar[5] arene and 2 was achieved in 40% overall yield. Single crystals of partially protonated 1 were obtained in a mixed solvent of dichloromethane and isopropyl ether, and the structure of the protonated 1, established by X-ray diffraction analysis, indicated that the A1/A2 methoxy groups at one hydroquinone unit in pillar[5]arene 2 have been replaced by protonated amino functionalities, and protonated pillar[4]arene[1]diaminobenzene **1** exists as a pair of conformational enantiomers, (*pR*, *pS*, *pS*, *pS*, *pS*) and (*pS*, *pR*, *pR*, *pR*, *pR*), due to the molecule's planar chirality (Figure 1).²³ In the solid state, pillar[5]arene molecules (**1**) are packed by formation of chiral one-dimensional channels (Figure 1), which are completely different from those in **2**.^{11a} Pillar[5]arene **1** in free base form is stable in CHCl₃ for a few hours, but could be easily oxidized in the air, while the protonated pillar[5]arene **1** is stable both in the air and in solution. The interconversion of the two enantiomers of **1** is at a rate faster than ¹H NMR time scale at room temperature in CD₂Cl₂, as only one set of sharp proton signals was observed in the ¹H NMR spectrum of **1** at room temperature (Supporting Information).

In order to investigate the host-guest behavior of 1 using a ¹H NMR spectroscopic method, 1,3-dihexyl-1*H*-imidazol-3-ium **G** (Figure 2), an imidazolium ion, a good guest species of pillar[5]arenes reported previously,²⁴ was selected as a model guest to study its interaction with 1. As shown in Figure 3, the

Figure 2. Molecular structure of the imidazolium guest, 1,3-dihexyl-1*H*-imidazol-3-ium G.

Figure 3. ¹H NMR spectra (500 MHz, CDCl₃): (a) 10 mM G; (b) 10 mM G and 10 mM H; (c) addition of excessive CF₃COOH in b; (d) addition of excessive K₂CO₃ in c; and (e) addition of excessive CF₃COOH in d.

Scheme 2. Schematic Representation of Reversible Binding/Releasing of G Controlled by Protonation/Deprotonation of the Two Primary Amino Functions of 1

¹H NMR spectrum of an equimolar mixture of **G** and freshly prepared host 1 (in CDCl₃) showed obvious upfield shifts (-0.35, -0.45, -0.54, and -0.50 ppm) for proton signals of H_a , H_b , H_c , and H_d of G, suggesting formation of a threaded [2] pseudorotaxane structure $G \subset 1$. The ¹H NMR NOESY spectrum of the complex $(G \subset 1)$ showed NOE correlations between protons H_a, H_b, H_c, and H_d of G and the methoxyl protons of 1 (Supporting Information, Figure S10), supporting the assignment of a threaded structure $(G \subset 1)$. A Job plot (Supporting Information, Figure S11) based on ¹H NMR data also provided evidence of the formation of a 1:1 complex between 1 and G in CDCl₃, which was further confirmed by ESI-HRMS spectrometry of m/z: 957.5738, assigned to [G \subset 1 -CF₃COO⁻]⁺ (calcd. for C₅₈H₇₇N₄O₈ 957.5736) (Supporting Information, Figure S12). The association constant (Ka) of $G \subset 1$ in CDCl₃ was determined to be 205.0 \pm 20.0 M⁻¹ with a ¹H NMR titration method (Supporting Information, Figures S13 and S14), so the binding strength is considered a weak one when compared to that of an imidazolium cation to 2 in CHCl₃ $(1.04 (\pm 0.15) \times 10^3 \text{ M}^{-1}).^{24c}$

Since amino groups can be easily protonated, substituting the alkoxy groups by amino functions should be able to change the electronic properties as well as the host-guest behaviors of

pillar[5] arene cavities through protonating the amino groups. For example, protonation of the amino groups of 1 would change the electron-rich cavity of 1 to an electron-deficient (positively charged) one. As a result, the host-guest property of the protonated 1 would be completely different from that of the neutral 1. Since protonation and deprotonation of the amino functions can be reversibly controlled by alternate addition of an acid and a base, the controlled binding and release of the guest G should therefore be able to be reversibly manipulated. In order to prove this assumption, CF₃COOH was added to the host-guest complex $G \subset 1$ solution in CDCl₃. ¹H NMR analysis indicated that the signals of protons H_a , H_b , $H_{\mbox{\scriptsize c}}$ and $H_{\mbox{\scriptsize d}}$ of G were shifted back to the positions of free G(Figure 3C), showing dissociation of guest G from the cavity of protonated 1. Upon neutralization of the acidic solution of 1 by addition of K_2CO_3 , the proton signals of G (H_{at} , H_{bt} , H_{ct} , and H_d) shifted back to the positions corresponding to complex $G \subset 1$, a clear evidence of rebinding of **G** by the deprotonated 1 (Figure 3D). It was found in the study that addition of CF_3COOH again into the $G{\subset}1$ solution resulted in the signals shifting back to the positions of free G. This result indicated that the releasing and binding of guest G by 1 were able to be reversibly controlled by the addition of TFA and K₂CO₃ alternately. Although the proton signals of 1 in ¹H NMR

The Journal of Organic Chemistry

spectra became unclear after two cycles of controlled guest binding and releasing due to instability of the diaminosubstituted pillar[5]arene 1, the base-acid regulated bindingreleasing of G was well verified experimentally (Scheme 2).

CONCLUSION

In conclusion, we have developed an acid-base-responsive supramolecular host-guest system based on an A1/A2diamino-substituted pillar[5]arene (1)/1,3-dihexyl-1*H*-imidazol-3-ium (G) molecular recognition motif, in which imidazolium ion G, threaded in the tubular cavity of 1 under basic or neutral conditions, was able to be released from the positively charged cavity in an acidic environment. The novel and efficient synthesis of 1 described in this report is the first reported direct replacement of the two A1/A2-alkoxy groups of pillar[5]arene 2 by primary amino functions, which would facilitate the development of new supramolecular systems and functional materials.

EXPERIMENTAL SECTION

General. Unless otherwise noted, starting materials were obtained from commercial suppliers and used without further purification. ¹H and ¹³C NMR spectra were recorded at 400 or 500 MHz spectrometers with TMS as the reference. HRMS spectra were recorded on a micrOTOF-Q spectrometer (ESI). Single crystal X-ray diffraction data were collected on a X-ray diffractometer equipped with a normal focus Mo-target X-ray tube ($\lambda = 0.71073$ Å). Data reduction included absorption corrections by the multiscan method. The structures were solved by direct methods and refined by full-matrix least-squares using SHELXS-97. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added at their geometrically ideal positions and refined isotropically.

Pillar[5]arenes 2, 3, and 4 (Scheme 1) were prepared according to the reported procedures. $11_{a,18,20,21}$

Pillar[4]arene[1]bistriflate (5).^{18b} To a solution of 4 (600.0 mg, 0.83 mmol) and pyridine (0.28 mL, 275.0 mg, 3.48 mmol) in CH₂Cl₂ (200 mL) was added triflic anhydride (0.28 mL, 469.6 mg, 1.66 mmol) at 0 °C, resulting in a mixture which was stirred at room temperature for 24 h, washed with aqueous HCl solution (1.0 M, 3×50 mL), and concentrated. The residue was purified by column chromatography (petroleum ether/EtOAc = 20:1 (ν/ν)) to afford 5 as white solid (671.2 mg, 82%); mp 106.6–107.4 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.41 (s, 2H), 6.88 (s, 2H), 6.85 (s, 2H), 6.84 (s, 2H), 6.76 (s, 2H), 3.96-3.80 (m, 10H), 3.78 (s, 6H), 3.75 (s, 6H), 3.73 (s, 6H), 3.68 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 150.9, 150.7, 150.7, 150.5, 146.2, 133.9, 129.7, 128.4, 127.9, 124.5, 124.1, 122.4, 119.8, 117.3, 114.8, 113.9, 113.8, 113.6, 55.7, 55.7, 55.7, 55.1, 52.6, 30.5, 29.5, 29.4, 29.2. HRMS (ESI): calcd for $C_{45}H_{45}F_6O_{14}S_2$ [M + H]⁺ 987.2149, found 987.2150; calcd for $C_{45}H_{48}F_6NO_{14}S_2$ [M + NH₄]⁺ 1004.2415, found 1004.2415.

Boc-Protected Pillar[4]arene[1]diaminobenzene (6). A mixture of compound **5** (652.0 mg, 0.66 mol), Cs_2CO_3 (861.0 mg, 2.64 mmol), XPhos (95.2 mg, 0.20 mmol), Pd(OAc)₂ (15.0 mg, 0.066 mmol), and NH₂Boc (295.6 mg, 2.64 mmol) in dioxane (200 mL) was heated to 100 °C under nitrogen for 4 h, filtered, and concentrated to result in a residue which was subjected to column chromatography (EtOAc/petroleum ether =1/20 (ν/ν)) to afford **6** as white solid (570.7 mg, 94%); decomposed at 177 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.38 (s, 2H), 7.73 (s, 2H), 6.90 (s, 2H), 6.86 (s, 2H), 6.83 (s, 2H), 6.71 (s, 2H), 4.02 (m, 2H), 3.86 (s, 6H), 3.84–3.68 (m, 24H), 3.47 (m, 2H), 1.73–1.43 (s, 18H). ¹³C NMR (126 MHz, CDCl₃): δ 153.6, 151.7, 150.7, 150.7, 148.5, 131.3, 129.6, 128.9, 128.3, 127.6, 126.9, 122.4, 114.2, 114.1, 114.0, 113.7, 79.3, 56.1, 55.9, 55.8, 30.9, 30.1, 29.3, 28.6. HRMS (ESI): calcd for C₅₃H₆₈N₃O₁₂ [M + NH₄]⁺ 938.4798, found 938.4798.

Pillar[4]arene[1]diaminobenzene (1). To a solution of **6** (460.0 mg, 0.50 mmol) in CH₂Cl₂ (50 mL) was added CF₃COOH (2.0 mL)

resulting in a mixture which was stirred at room temperature for 24 h, washed with 10% NaHCO₃ solution (2 × 10 mL) and brine (2 × 5 mL), and then concentrated to afford a crude product. Recrystallization of the crude product in CH₂Cl₂ and PE afforded 1 as colorless solid (342.2 mg, 95%). ¹H NMR (500 MHz, CD₂Cl₂): δ 7.15 (s, 2H), 7.02 (s, 2H), 6.93 (s, 2H), 6.90 (s, 2H), 6.63 (s, 2H), 4.20–3.89 (m, 2H), 3.89–3.67 (m, 30H), 3.32 (s, 2H). ¹³C NMR (126 MHz, CD₂Cl₂): δ 151.8, 150.3, 150.3, 148.2, 129.9, 128.3, 127.8, 125.1, 114.5, 113.2, 113.2, 112.3, 56.5, 55.5, 55.4, 31.6, 30.7, 29.4, 29.2. HRMS (ESI): calcd for C₄₃H₄₉N₂O₈ [M + H]⁺ 721.3489, found 721.3492.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00617.

Spectroscopic data for new compounds and complexes, titration protocol, Job plots, and determination of the association constants (PDF)

X-ray crystallographic data of 1 (CIF)

AUTHOR INFORMATION

Corresponding Authors

*Tel: +86-21-20608040; Fax: +86-21-20325173; Email address: lijs@sari.ac.cn.

*Tel: +86-21-20325008; Fax: +86-21-20325173; Email address: jiangb@sari.ac.cn.

*Tel: +86-21-20608039; Fax: +86-21-20325173; Email address: wenk@sari.ac.cn.

Present Addresses

^LW.B.H.: University of Chinese Academy of Sciences, Beijing 100039, P. R. China.

^{II}K.W.: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (21371177) and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA01020304).

REFERENCES

(1) (a) Coskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A. Chem. Soc. Rev. 2012, 41, 19. (b) Coskun, A.; Spruell, J. M.; Barin, G.; Dichtel, W. R.; Flood, A. H.; Botros, Y. Y.; Stoddart, J. F. Chem. Soc. Rev. 2012, 41, 4827. (c) Yan, X.; Wang, F.; Zheng, B.; Huang, F. Chem. Soc. Rev. 2012, 41, 6042. (d) Zhang, D.-W.; Zhao, X.; Li, Z.-T. Acc. Chem. Res. 2014, 47, 1961. (e) Han, Y.; Meng, Z.; Ma, Y.-X.; Chen, C.-F. Acc. Chem. Res. 2014, 47, 2026. (f) Qu, D.-H.; Wang, Q.-C.; Zhang, Q.-W.; Ma, X.; Tian, H. Chem. Rev. 2015, 115, 7543.

(2) (a) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. *Science* **2000**, 289, 1172. (b) Green, J. E.; Wook Choi, J.; Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; DeIonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shik Shin, Y.; Tseng, H. R.; Stoddart, J. F.; Heath, J. R. *Nature* **2007**, 445, 414.

(3) (a) Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop, B. H.; Tseng, H. R.; Jeppesen, J. O.; Huang, T.-J.; Brough, B.; Baller, M.; Magonov, S.; Solares, S. D.; Goddard, W. A.; Ho, C. M.; Stoddart, J. F. *J. Am. Chem. Soc.* **2005**, *127*, 9745. (b) Wu, J.; Leung, K. C.; Benitez, D.; Han, J.-Y.; Cantrill, S. J.; Fang, L.; Stoddart, J. F.

The Journal of Organic Chemistry

Angew. Chem., Int. Ed. 2008, 47, 7470. (c) Coutrot, F.; Busseron, E. Chem. - Eur. J. 2008, 14, 4784. (d) Chuang, C.-J.; Li, W.-S.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chao, I.; Chiu, S.-H. Org. Lett. 2009, 11, 385. (e) Clavel, C.; Romuald, C.; Brabet, E.; Coutrot, F. Chem. - Eur. J. 2013, 19, 2982.

(4) (a) Deutman, A. B. C.; Monnereau, C.; Elemans, J. A. A. W.; Ercolani, G.; Nolte, R. J. M.; Rowan, A. E. Science 2008, 322, 1668.
(b) Blanco, V.; Carlone, A.; Hänni, K. D.; Leigh, D. A.; Lewandowski, B. Angew. Chem., Int. Ed. 2012, 51, 5166. (c) Blanco, V.; Leigh, D. A.; Marcos, V.; Morales-Serna, J. A.; Nussbaumer, A. L. J. Am. Chem. Soc. 2014, 136, 4905. (d) Blanco, V.; Leigh, D. A.; Lewandowska, U.; Lewandowski, B.; Marcos, V. J. Am. Chem. Soc. 2014, 136, 15775.
(e) Beswick, J.; Blanco, V.; De Bo, G.; Leigh, D. A.; Lewandowska, U.; Lewandowski, B.; Mishiro, K. Chem. Sci. 2015, 6, 140.

(5) (a) Hsueh, S.-Y.; Kuo, C.-T.; Lu, T.-W.; Lai, C.-C.; Liu, Y.-H.; Hsu, H.-F.; Peng, S.-M.; Chen, C.-H.; Chiu, S.-H. Angew. Chem., Int. Ed. 2010, 49, 9170. (b) Dong, S.; Luo, Y.; Yan, X.; Zheng, B.; Ding, X.; Yu, Y.; Ma, Z.; Zhao, Q.; Huang, F. Angew. Chem., Int. Ed. 2011, 50, 1905. (c) Dong, S.; Zheng, B.; Xu, D.; Yan, X.; Zhang, M.; Huang, F. Adv. Mater. 2012, 24, 3191. (d) Yan, X.; Xu, D.; Chi, X.; Chen, J.; Dong, S.; Ding, X.; Yu, Y.; Huang, F. Adv. Mater. 2012, 24, 362.

(6) (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495. (b) Allwood, B. L.; Shahriari-Zavareh, H.; Stoddart, J. F.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1987, 1058. (c) Kolchinski, A. G.; Busch, D. H.; Alcock, N. W. J. Chem. Soc., Chem. Commun. 1995, 1289. (d) Ashton, P. R.; Chrystal, E. J.; Glink, T. P. T.; Menzer, S.; Schiavo, C.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; White, A. J. P.; Williams, D. J. Chem. -Eur. J. 1996, 2, 709.

(7) (a) Harada, A. Acc. Chem. Res. 2001, 34, 456. (b) Zhu, L.; Zhang, D.; Qu, D.; Wang, Q.; Ma, X.; Tian, H. Chem. Commun. 2010, 46, 2587. (c) Wang, K.-R.; Guo, D.-S.; Jiang, B.-P.; Liu, Y. Chem. Commun. 2012, 48, 3644.

(8) (a) Gutsche, C. D. *Calixarenes Revisited*, 2nd ed.; Royal Society of Chemistry: Cambridge, 2000. (b) Gutsche, C. D. *Calixarenes, An Introduction*; Royal Society of Chemistry: Cambridge, 2008.

(9) (a) Kim, K. Chem. Soc. Rev. **2002**, 31, 96. (b) Kaifer, A. E.; Li, W.; Silvi, S.; Sindelar, V. Chem. Commun. **2012**, 48, 6693.

(10) (a) Diederich, F. *Cyclophanes*; The Royal Society of Chemistry: Cambridge, 1991. (b) Barnes, J. C.; Juríček, M.; Strutt, N. L.; Frasconi, M.; Sampath, S.; Giesener, M. A.; McGrier, P. L.; Bruns, C. J.; Stern, C. L.; Sarjeant, A. A.; Stoddart, J. F. *J. Am. Chem. Soc.* **2013**, *135*, 183. (c) Gong, H.-Y.; Rambo, B. M.; Karnas, E.; Lynch, V. M.; Sessler, J. L. *Nat. Chem.* **2010**, *2*, 406.

(11) (a) Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022. (b) Cao, D.; Kou, Y.; Liang, J.; Chen, Z.; Wang, L.; Meier, H. Angew. Chem., Int. Ed. 2009, 48, 9721. (c) Hu, X.-B.; Chen, Z.; Chen, L.; Zhang, L.; Hou, J.-L.; Li, Z.-T. Chem. Commun. 2012, 48, 10999. (d) Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Acc. Chem. Res. 2012, 45, 1294. (e) Song, N.; Yang, Y.-W. Sci. China: Chem. 2014, 57, 1185. (f) Li, C. Chem. Commun. 2014, 50, 12420.

(12) (a) Li, C.; Zhao, L.; Li, J.; Ding, X.; Chen, S.; Zhang, Q.; Yu, Y.;
Jia, X. Chem. Commun. 2010, 46, 9016. (b) Ogoshi, T.; Demachi, K.;
Kitajima, K.; Yamagishi, T. A. Chem. Commun. 2011, 47, 10290.
(c) Ma, Y.; Chi, X.; Yan, X.; Liu, J.; Yao, Y.; Chen, W.; Huang, F.; Hou,
J.-L. Org. Lett. 2012, 14, 1532. (d) Ogoshi, T.; Shiga, R.; Yamagishi, T.
A. J. Am. Chem. Soc. 2012, 134, 4577. (e) Xia, W.; Hu, X.-Y.; Chen, Y.;
Lin, C.; Wang, L. Chem. Commun. 2013, 49, 5085. (f) Hu, W.-B.;
Yang, H.-M.; Hu, W.-J.; Ma, M.-L.; Zhao, X.-L.; Mi, X.-Q.; Liu, Y. A.;
Li, J.-S.; Jiang, B.; Wen, K. Chem. Commun. 2014, 50, 10460.

(13) (a) Wang, P.; Li, Z.; Ji, X. Chem. Commun. 2014, 50, 13114.
(b) Li, C.; Shu, X.; Li, J.; Fan, J.; Chen, Z.; Weng, L.; Jia, X. Org. Lett. 2012, 14, 4126. (c) Shu, X.; Chen, S.; Li, J.; Chen, Z.; Weng, L.; Jia, X.; Li, C. Chem. Commun. 2012, 48, 2967. (d) Xia, W.; Hu, X. Y.; Chen, Y.; Lin, C.; Wang, L. Chem. Commun. 2013, 49, 5085. (e) Ogoshi, T.; Takashima, S.; Yamagishi, T. J. Am. Chem. Soc. 2015, 137, 10962.

(14) (a) Fang, Y. Y.; Wu, L.; Liao, J. L.; Chen, L.; Yang, Y. Y.; Liu, N.;
He, L. T.; Zou, S. L.; Feng, W.; Yuan, L. H. *RSC Adv.* 2013, *3*, 12376.
(b) Tan, L.-L.; Li, H.; Tao, Y.; Zhang, S. X.-A.; Wang, B.; Yang, Y.-W.

Adv. Mater. **2014**, *26*, 7027. (c) Ogoshi, T.; Sueto, R.; Yoshikoshi, K.; Sakata, Y.; Akine, S.; Yamagishi, T. *Angew. Chem., Int. Ed.* **2015**, *54*, 9849.

(15) (a) Si, W.; Chen, L.; Hu, X.-B.; Tang, G.; Chen, Z.; Hou, J.-L.;
Li, Z.-T. Angew. Chem., Int. Ed. 2011, 50, 12564. (b) Hu, X.-B.; Tang,
Z.; Chen, G.; Hou, J.-L.; Li, Z.-T. J. Am. Chem. Soc. 2012, 134, 8384.
(c) Chen, L.; Si, W.; Zhang, L.; Tang, G.; Li, Z.-T.; Hou, J.-L. J. Am.
Chem. Soc. 2013, 135, 2152.

(16) (a) Zhang, H.; Ma, X.; Nguyen, K. T.; Zhao, Y. ACS Nano 2013,
7, 7853. (b) Yao, Y.; Xue, M.; Chen, J.; Zhang, M.; Huang, F. J. Am. Chem. Soc. 2012, 134, 15712. (c) Duan, Q.; Cao, Y.; Li, Y.; Hu, X.; Xiao, T.; Lin, C.; Pan, Y.; Wang, L. J. Am. Chem. Soc. 2013, 135, 10542. (d) Chang, Y.; Yang, K.; Wei, P.; Huang, S.; Pei, Y.; Zhao, W.; Pei, Z. Angew. Chem., Int. Ed. 2014, 53, 13126.

(17) (a) Ogoshi, T.; Yoshikoshi, K.; Aoki, T.; Yamagishi, T. Chem. Commun. 2013, 49, 8785. (b) Xia, B.; Zheng, B.; Han, C.; Dong, S.; Zhang, M.; Hu, B.; Yu, Y.; Huang, F. Polym. Chem. 2013, 4, 2019.
(c) Chi, X.; Ji, X.; Xia, D.; Huang, F. J. Am. Chem. Soc. 2015, 137, 1440. (d) Xia, W.; Ni, M.; Yao, C.; Wang, X.; Chen, D.; Lin, C.; Hu, X.-Y.; Wang, L. Macromolecules 2015, 48, 4403.

(18) (a) Ogoshi, T.; Umeda, K.; Yamagishi, T.; Nakamoto, Y. Chem. Commun. 2009, 4874. (b) Strutt, N. L.; Fairen-Jimenez, D.; Iehl, J.; Lalonde, M. B.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T.; Stoddart, J. F. J. Am. Chem. Soc. 2012, 134, 17436. (c) Ogoshi, T.; Yamafuji, D.; Akutsu, T.; Naito, M.; Yamagishi, T. Chem. Commun. 2013, 49, 8782. (d) Strutt, N. L.; Zhang, H.; Stoddart, J. F. Chem. Commun. 2014, 50, 7455.

(19) (a) Strutt, N. L.; Schneebeli, S. T.; Stoddart, J. F. Supramol. Chem. 2013, 25, 596. (b) Strutt, N. L.; Zhang, H.; Schneebeli, S. T.; Stoddart, J. F. Chem. - Eur. J. 2014, 20, 10996.

(20) Xie, C.; Hu, W.; Hu, W.; Liu, Y. A.; Huo, J.; Li, J.; Jiang, B.; Wen, K. Chin. J. Chem. 2015, 33, 379.

(21) (a) Ogoshi, T.; Yamafuji, D.; Kotera, D.; Aoki, T.; Fujinami, S.; Yamagishi, T. A. J. Org. Chem. 2012, 77, 11146. (b) Han, C.; Zhang, Z.; Yu, G.; Huang, F. Chem. Commun. 2012, 48, 9876. (c) Pan, M.; Xue, M. Eur. J. Org. Chem. 2013, 2013, 4787. (d) Pan, M.; Xue, M. RSC Adv. 2013, 3, 20287.

(22) (a) Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 10028.
(b) Surry, D. S.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 10354.
(c) Qin, L.; Cui, H.; Zou, D.; Li, J.; Wu, Y.; Zhu, Z.; Wu, Y. Tetrahedron Lett. 2010, 51, 4445.

(23) Ogoshi, T.; Yamafuji, D.; Aoki, T.; Kitajima, K.; Yamagishi, T.; Hayashi, Y.; Kawauchi, S. *Chem. - Eur. J.* **2012**, *18*, 7493.

(24) (a) Li, C.; Zhao, L.; Li, J.; Ding, X.; Chen, S.; Zhang, Q.; Yu, Y.; Jia, X. Chem. Commun. 2010, 46, 9016. (b) Ogoshi, T.; Ueshima, N.; Yamagishi, T. A.; Toyota, Y.; Matsumi, N. Chem. Commun. 2012, 48, 3536. (c) Xia, B.; Zheng, B.; Han, C.; Dong, S.; Zhang, M.; Hu, B.; Yu, Y.; Huang, F. Polym. Chem. 2013, 4, 2019. (d) Dong, S.; Zheng, B.; Yao, Y.; Han, C.; Yuan, J.; Antonietti, M.; Huang, F. Adv. Mater. 2013, 25, 6864. (e) Hu, W.-B.; Hu, W.-J.; Liu, Y. A.; Li, J.-S.; Jiang, B.; Wen, K. Org. Lett. 2015, 17, 2940. (f) Hu, W.-B.; Xie, C.-D.; Hu, W.-J.; Zhao, X.-L.; Liu, Y. A.; Huo, J.-C.; Li, J.-S.; Jiang, B.; Wen, K. J. Org. Chem. 2015, 80, 7994. (g) Hu, W.-B.; Hu, W.-J.; Zhao, X.-L.; Liu, Y. A.; Li, J.-S.; Jiang, B.; Wen, K. Chem. Commun. 2015, 51, 13882.